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systems 
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The input-to-state stability (ISS) problem is studied for switched systems with infi-
nite subsystems. By using multiple Lyapunov function method, a sufficient ISS 
condition is given based on a quantitative relation of the control and the values of 
the Lyapunov functions of the subsystems before and after the switching instants. 
In terms of the average dwell-time of the switching laws, some sufficient ISS con-
ditions are obtained for switched nonlinear systems and switched linear systems, 
respectively. 
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1  Introduction 

Since the performance of a real control system is affected more or less by uncertainties, such as 
unmodelled dynamics, parameter perturbations, exogenous disturbances, measurement errors, etc., 
the research on robustness of control systems do always have a vital status in the development of 
control theory and technology. Aiming at robustness analysis of nonlinear control systems, Son-
tag, Wang and Lin[1―11] developed a new method from the point of view of input-to-state stability 
(ISS), input-to-output stability (IOS) and integral input-to-state stability (iISS), and obtained a 
series of fundamental results by utilizing ISS-, IOS-Lyapunov functions. Recently, Mancilla- 
Aguilar and García[12] applied the idea to study the robustness of switched nonlinear systems of 
the form ( ) ( ( ), ( ))ix t f x t u t=  ( i∈Λ , where Λ  is the index set).  

For switched systems, although lots of results have been presented, they mainly focus on the 
problems of stability, controllability, observability and stabilization control[13―21]. For the robust-
ness study of such systems, the relevant literature is not rich, and ref. [12] seems the only one on 
the ISS of switched nonlinear systems, to our knowledge. 
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In this paper, we investigate the ISS of general switched nonlinear systems (including the case 
where there is no common Lyapunov function). Unlike the existing results, which mainly focus 
on establishing ISS converse theorems for nonlinear systems[1―11], by opening out the character-
istic of switched nonlinear (SNL) systems, we aim at presenting some sufficient ISS conditions 
for SNL systems, including for instance, the relation of the ISS and the average dwell-time of the 
switching law. Precisely, we will investigate SNL time-varying systems, which may involve in 
infinite subsystems. In this case, switching among different subsystems may lead to discontinuity 
of the system function, and dissatisfies the continuity assumption required by refs. [1―11]. Thus, 
the results in refs. [1―11] cannot be generalized to general SNL systems directly. In some spe-
cial cases, for instance, where there exists a common ISS-Lyapunov function (CISSLF), a suffi-
cient and necessary ISS condition of SNL systems with arbitrary switching laws is given[12] under 
the assumption that ( , )if x u  is uniformly (with respect to i ) locally Lipschitz continuous on 

,x u . Here, by using the methods of multiple Lyapunov function and average dwell-time, some 
sufficient ISS conditions are given for general SNL systems, which may have no CISSLF. The 
ISS-Lyapunov functions of the subsystems are allowed to be different from each other rather than 
simply assuming the existence of a CISSLF. Besides, the uniformity assumption on the local 
Lipschitz continuity of ( , )if x u  with respect to i  is not required. Thus, our framework is more 
general than that in ref. [12].  

The remainder of this paper is organized as follows. Section 2 describes the problem to be in-
vestigated and introduces some notations and definitions. In section 3, by using the multiple 
Lyapunov function method, a sufficient ISS condition is given for general switched nonlinear 
systems. In section 4, by using the average dwell-time method, some sufficient ISS conditions are 
presented for SNL systems and switched linear systems, respectively. In section 5, some con-
cluding remarks are given. 

2  Notations and problem formulation 

Consider the following switched nonlinear system  
 ( , ( )) 0 0( ) ( , ( ), ( )), ( ) ,t x tx t f t x t u t x t xσ= =  (1) 

where ( ) nx ⋅ ∈R  and ( ) mu ⋅ ∈R  are the system state and input, respectively; and ( , ) :σ ⋅ ⋅  

0[ , )t ∞ n× →R I ( I  is the index set, maybe infinite) is the switching law and is right-hand con-

tinuous and piecewise constant on t ; for any ,i∈ I  function ( , , ) :if t x u  0[ , ) n mt +∞ ×R  
n→ R is continuous with respect to , ,t x u , uniformly locally Lipschitz continuous with respect to 

,x u , and satisfies ( ,0,0) 0f ⋅ ≡ . 

Here, being different from ref. [12], ( , , )if t x u  is time varying, and the uniformity of the local 

Lipschitz continuity of ( , , )if t x u  is with respect to t  rather than i . 

Throughout the paper, +R  denotes the real number set [0, )∞ ; for a function ( ) :tγ + →R  
+R , γ ∈K  means that γ  is continuous and strictly increasing, and satisfies (0) 0γ = ; γ ∈ 

∞K  means that γ ∈K  and γ  are unbounded; for a function ( , ) :t sβ + +×R R ,+→ R β ∈KL  
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means that for any fixed s , ( , )t sβ ∈K , and for any fixed t , ( , )t sβ  is continuous and de-

creases to zero as s →∞ ; | |⋅  denotes the Euclidean norm in nR  and the corresponding in-

duced matrix norm, and for a nonempty subset n⊂ RM , | | inf | |x xη η∈ −M M (obviously, it 

holds {0}| | | |x x=  when {0}=M ); mL∞  denotes the set of all the measurable and locally essen-

tially bounded input ( ) mu ⋅ ∈R  on 0[ , )t ∞  under the following norm, 

 0|| || sup{| ( ) |, } ;u u t t t= < ∞≥  (2) 
for two functions ( )ϕ ⋅  and ( ),χ ⋅  symbol ( )ϕ χ ⋅  denotes the composite function ( ( ));ϕ χ ⋅  
∇  is the gradient operator.  

For any given switching law ( , ),σ ⋅ ⋅  initial condition 0 ,nx ∈R  ( ) ,mu L∞⋅ ∈  0( ) ( ; ,x t x t tσ  

0 , )x u  denotes the state trajectory of system (1) with the maximal existing interval 0[ , )t Tσ , 

where the constant 0 0( , , ) .T T t x uσ σ ∞≤  
Definition 1.  Consider the following general nonlinear system 

 0 0( ) ( , ( ), ( )), ( ) ,t g t t v t tω ω ω ω= =  (3) 

where function ( , , ) :g ⋅ ⋅ ⋅ 0[ , ) n m nt +∞ × →R R  satisfies ( ,0,0) 0.g ⋅ ≡  For any 0 ,nω ∈R  mv L∞∈ , 

if the trajectory 0 0( ) ( ; , , )t t t vω ω ω  of (3) is defined well on 0[ , )t ∞ , then the system is called 

forward complete. For a closed set n⊂ RM , if system (3) is forward complete for any 0ω ∈  

,M  mv L∞∈ , and 0( ) , ,t t tω ∈ ∀M ≥  then M  is called a closed invariant set of system (3). 
Remark 1.  By Definition 1, if system (1) is forward complete for any ( , )t xσ , then all of 

the subsystems are forward complete. 
Remark 2.  Obviously, if M  is a closed invariant set of all subsystems of system (1), then 

it is also a closed invariant set of system (1). 
Definition 2[1].  For the forward complete system (3) and its closed invariant set ,n⊂M R  

the system (3) is called (globally) input-to-state stable (ISS) with respect to M , if there exist 

two functions β ∈KL  and γ ∈K  such that for any 0 \nω ∈R M  and mv L∞∈ , 

 0 0 0 0 0| ( ; , , ) | (| | , ) (|| ||), .t t v t t v t tω ω β ω γ− + ∀M M≤ ≥  (4) 

Definition 3[3].  For the forward complete system (3) and its closed invariant set n⊂ RM , a 

smooth function 0( , ) : [ , )n
gV t tξ +× ∞ →R R  is called an ISS-Lyapunov function of the system 

(3) with respect to n⊂ RM , if there exist functions , , ,α α α χ∞∈ ∈K K  such that for any 

\nξ ∈R M , mμ ∈R  and 0 ,t t≥  

 (| | ) ( , ) (| | ),gV tα ξ ξ α ξM M≤ ≤  (5) 

 | | (| |) ( , ) ( , ) ( , , ) (| | ).g gt V t V t g tξ χ μ ξ ξ ξ μ α ξ∂
∂

⇒ +∇ ⋅ −M M≥ ≤  (6) 

For short, they will be denoted as ( ; , , , )gV α α α χ  in the sequel. 
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3  ISS conditions based on multiple Lyapunov functions 

In this section, by using the multiple Lyapunov function method, sufficient ISS conditions are 
explored for switched nonlinear systems. To this end, we need the following lemmas. 

Lemma 1[3].  For the forward complete system (3), assume n⊂ RM  is its closed invariant 
set. If system (3) has an ISS-Lyapunov function ( ; , , , )gV α α α χ  such that (5) and (6) hold for 

any \nξ ∈R M , mμ ∈R  and 0 ,t t≥  then there exists 0 0( , , )g gt t t vω′ ′  satisfying 

0 gt t′ ∞≤ ≤  such that the solution 0 0( ) ( ; , , )t t t vω ω ω  of system (3) has the following prop-

erty: ( ( ), ) gt t Sω ∈  for any ,gt t′≥  and ( ( ), ) gt t Sω ∉  for any gt t′< . Here, 

 {( , ) : ( , ) (|| ||)}.g gS t V t vξ ξ α χ= ≤  

Lemma 2[6].  For any κ ∈K , there exists a 1C  function ρ ∞∈K  such that 
 ( ) ( ) ( ), 0.r r r rρ κ ρ ∀≥ ≥  

Lemma 3.  For the forward complete system (3) and its closed invariant set n⊂ RM , if 
system (3) has an ISS-Lyapunov function ( ; , , , )gV α α α χ  such that (5) and (6) hold for any 

\nξ ∈R M , mμ ∈R  and 0 ,t t≥  then there exists a 1C  function ρ ∞∈K  depending only on 
α  and α  such that 

 ( , ) (| |) ( , ) ( , ) ( , , ) ( , ),g g g gW t W t W t g t W t
t

ξ χ μ ξ ξ ξ μ ξ∂
⇒ +∇ ⋅ −

∂
≥ ≤  

where ( , ) ( , )g gW t V tξ ρ ξ=  and ( ) ( ) .χ ρ α χ⋅ = ⋅ ∈K  

Proof.  For 1( ) ( ) ,κ α α −⋅ ⋅ ∈K  by Lemma 2, α  and α ∞∈K  can determine a 1C  

function ρ ∞∈K  such that ( ) ( ) ( ), 0.r r r rρ κ ρ ∀≥ ≥  Then, by testifying directly for ( , )gW tξ  

( , )gV tρ ξ= , one can obtain the conclusion.  

Lemma 4.  For the forward complete system (1), suppose that n⊂ RM  is a closed invari-
ant set of system (1), and the switching instants of switching law ( , )t xσ  are 1 2t t< <  

.kt< <  If for any given ,i∈ I  subsystem ( , , )if t x u  has an ISS-Lyapunov function 

( ; , , , )i i i iiV α α α χ  such that ( ) sup ( )i i Kα α∈ ∞⋅ ⋅ ∈I  and 

 
1 1( , ( )) ( , ( ))max{ ( ( ), ), (|| ||)} ( ( ), ),

l l l lt x t l l t x t l lV x t t u V x t tσ σα χ
− −

≥  (7) 

then for set {( , ) : ( , ) (|| ||)} ( ),i iS t V t v iξ ξ α χ= ∈I≤  there exists a common time-instant 
* *

0, 0,( ( ))t t t x u tσ σ  such that 

 ( , ( )) 0( ( ), ) ,  [ , ),t x tx t t S t t tσ σ
∗∉ ∀ ∈  (8) 

 *
( , ( ))( ( ), ) ,  [ , ).t x tx t t S t tσ σ∀ ∈ +∞≤  (9) 

Proof.  For 0,  1,  2,  ,l =  let ( , ( )) .l l lt x t iσ =  Then, by Lemma 1, for the subsystem 

( , , )
lif t x u  on the interval 1[ , )l lt t + , there exists 



 

1996 FENG Wei et al. Sci China Ser F-Inf Sci | Dec. 2008 | vol. 51 | no. 12 | 1992-2004 

 ( , ( ), ) ,
l li i l l lt t t x t u t′ ′ ≥  (10) 

such that for any ,
lit t′≥  the state trajectory 0 0 1 1( ) ( ; , , ) ( ; , ( ), )l lx t x t t x u x t t x t uσ σ − −=  satisfies 

( )( ),
lix t t S∈  (that is, ( ( ), ) (|| ||)

liV x t t uα χ≤ ); and for any 
lit t′< , ( )( ), .

lix t t S∉  

If 1 ll it t+ ′<  for any 0,1,2, ,l =  then ( )( ),
lix t t S∉ ( 0,1,2, )l =  for any 0.t t≥  In this 

case, set * .tσ = ∞  Otherwise, there exists a nonnegative integer 0l  such that 
00 1.

li lt t +′ ≤  Let 

 { }0 *0 1* min : , .
l ll l i l il l t t t tσ

∗
+′ ′= =≤≤ ≤  

Then, by Lemma 1, we have (8), and ( )
*

( ),
lix t t S∈  for *

* 1[ , )lt t tσ +∀ ∈ . Particularly, * 1( ( ),lx t +  

** 1)
ll it S+ ∈ , that is, 

* * 1 * 1( ( ), ) (|| ||).
li l lV x t t uα χ+ + ≤  Thus, from (7), it follows that 

 
* 1 ** 1 * 1 * 1 * 1( ( ), ) max ( ( ), ), (|| ||) (|| ||).{ }

l li l l i l lV x t t V x t t u uα χ α χ
+ + + + +≤ ≤  

This implies that 
* 1 * 1 * 1 * 1 * 1( , ( ), ) .

l li i l l lt t t x t u t
+ + + + +′ ′ ≤  Therefore, 

 
* 1 * 1 * 2( ( ), ) (|| ||), [ , ).

li l lV x t t u t t tα χ
+ + +∀ ∈≤  

Repeating the above process for * 2, * 3, ,l l l= + +  one can obtain (9). 
Based on the method of multiple Lyapunov function, we have the following theorem. 
Theorem 1.  Consider the forward complete system (1). Suppose that n⊂ RM  is its closed 

invariant set, and the switching instants of the switching law ( , )t xσ  are 1t <  .kt< <  If 

there exists ISS-Lyapunov function ( ; , , , )i i i iiV α α α χ  of subsystem ( , , )if t x u ( i∈ I ) such that 

(i) , , ,α α α χ∞∈ ∈K K , where ( ) inf ( ), ( ) sup ( ), ( ) inf ( )i i i i iiα α α α α α∈ ∈ ∈⋅ ⋅ ⋅ ⋅ ⋅ ⋅I I I  and 

( ) sup ( )i iχ χ∈⋅ ⋅I ; 

(ii) (7) holds at each switching instant lt ( 0,1,2,l = ), 
then system (1) is input-to-state stable. 

Proof.  First, by Definition 3 and (i), for any \nξ ∈R M , mμ ∈R  and i∈ I , we have 

 0(| | ) ( , ) (| | ),  ,iV t t tα ξ ξ α ξ ∀M M≤ ≤ ≥  

 0| | (| |) ( , ) ( , ) ( , , ) (| | ),  ;i i iV t V t f t t t
t

ξ χ μ ξ ξ ξ μ α ξ∂
⇒ +∇ ⋅ − ∀

∂M M≥ ≤ ≥  (11) 

and by Lemma 2, we know that there exists a 1C  function ρ ∞∈K  depending only on α and 

α  such that ( ) ( ) ( ), 0,r r r rρ κ ρ ∀≥ ≥  where 1( ) ( ).κ α α −⋅ ⋅  Let ( , )iW tξ ( , )iV tρ ξ=  
and ( ) ( ).χ ρ α χ⋅ = ⋅  Then, by Lemma 3 we have 

 (| | ) ( , ) (| | ), ,iW t iρ α ξ ξ ρ α ξ ∀ ∈M M I≤ ≤  (12) 

 ( , ) (| |) ( , ) ( , ) ( , , ) ( , ), .i i i i iW t W t W t f t W t i
t

ξ χ μ ξ ξ ξ μ ξ∂
⇒ +∇ ⋅ − ∀ ∈

∂
I≥ ≤  (13) 

By Lemma 4, there exists *tσ  such that (8) and (9) hold. Let *l  be the largest integer l  

such that * .lt tσ≤  Then, from (8) and (9) and the definition of ( , )iW tξ , it follows that 

 *
( , ( )) *( ( ), ) (|| ||), [ , )

l lt x t lW x t t u t t tσ σχ> ∀ ∈  or 1[ , ), 0,1, , * 1,l lt t l l+ = −  (14) 
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 *
( , ( )) * 1( ( ), ) (|| ||), [ , )

l lt x t lW x t t u t t tσ σχ +∀ ∈≤  or 1[ , ), * 1,l lt t l l+ = +  (15) 

This together with (13) and (14) gives 

 *
( , ( )) ( , ( )) *( ( ), ) ( ( ), ), [ , )

l l l lt x t t x t l
d W x t t W x t t t t t
dt σ σ σ< − ∀ ∈  or 1[ , ), 0,1, , * 1.l lt t l l+ = −  (16) 

Hence, we have 

 
*

* * * *

1

( ) *
*( , ( )) ( , ( )) * *

( )
( , ( )) 1 1 ( , ( ))

[ , ),( ( ), ) ( ( ), ) ,

0,1, , * 1.( ( ), ) ( ( ), ) ,

l
l l l l

l l
l l l l

t t
lt x t t x t l l

t t
t x t l l t x t l l

t t tW x t t W x t t e

l lW x t t W x t t e

σσ σ

σ σ
+

− −

− −
+ +

⎧ ∀ ∈⎪
⎨ = −⎪⎩

≤

≤
 (17) 

From (7) and (8), the definition of ( , )iW tξ , (14), and (13) it is easy to see 

 
1 1( , ( )) ( , ( ))( ( ), ) ( ( ), ), 0,1, , *.

l l l lt x t l l t x t l lW x t t W x t t l lσ σ − −
=≤  (18) 

Then, for any *
*[ , )lt t tσ∈  or 1[ , ), 0,1, , * 1,l lt t l l+ = −  by (17) and (18) we have 

1 1

1 0
2 2 0 0

( )
( , ( )) ( , ( ))

( ) ( )
( , ( )) 1 1 ( , ( )) 0 0

( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) .

l
l l l l

l
l l

t t
t x t t x t l l

t t t t
t x t l l t x t

W x t t W x t t e

W x t t e W x t t e

σ σ

σ σ

− −

−
− −

− −

− − − −
− −

≤

≤ ≤ ≤
 

This together with (12) and (15) leads to 
 0( )

0(| ( ) | ) max{ (| | ) , (|| ||)}.t tx t x e uρ α ρ α χ− −
M M≤  

Let 1 1( , ) ( ( ( )) )st s r eβ α ρ ρ α− − −=  and 1( ) ( )r rγ α α χ−= . Then, ( , ) ,t sβ γ∈ ∈KL K  
and  
 0 0 0 0 0| ( ) | | ( ; , , ) | (| | , ) (|| ||), .x t x t t x u x t t u t tσ β γ= − + ∀M M M≤ ≥  

Thus, system (1) is input-to-state stable. 
Remark 3.  Condition (ii) of Theorem 1 says that the energy of the system should not be in-

creasing at switching instants. This is because that the ISS is a global property holding for all 

0t t≥  with respect to 0 0( )x t x=  and ( )u t , rather than a limit-sup property. Otherwise, for in-

stance, if limsup | ( ) |t x t→∞ M  is considered, then the condition can be relaxed to that (7) holds 

after finite switching instants. 
Remark 4.  From the proof of Theorem 1, we see that ( , )t sβ ∈KL  and γ ∈K  are inde-

pendent of the concrete choice of ( , )σ ⋅ ⋅ . In other words, the switched nonlinear system (1) is 
ISS for all ( , )σ ⋅ ⋅  satisfying (7). 

Remark 5.  In Theorem 1, instead of condition (ii), if we assume that there exists an integer 

0l  such that 
0 0 00 01 ( , ( ), ),

l ll i i l lt t t t x t u+ ′ ′≥  and 

 1 1( , ( )) ( , ( )) 0

( , ( )) 0 0

( ( ), ) ( ( ), ), 0,1, , ,

( ( ), ) (|| ||), 1, 2, ,
l l l l

l l

t x t l l t x t l l

t x t l l

W x t t W x t t l l

W x t t u l l l
σ σ

σ α χ
− −

=⎧⎪
⎨ = + +⎪⎩

≤

≤
 (19) 

then system (1) is input-to-state stable. 
In the sequel, we will provide some sufficient ISS conditions from another point of view by 

employing the concept of dwell-time of a switching law. 
Definition 4.  For a switching law ( , ),t xσ  suppose its switching instants are 0 1t t< <  

.kt< <  Then, 0 1inf ( )k k kt tτ += −≥  is called its dwell-time. 
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Corollary 1.  For the forward complete system (1), suppose that n⊂ RM  is its closed in-
variant set, and the switching instants of switching law ( , )t xσ  are 0 1 .kt t t< < < <  Under 
the conditions and notations of Theorem 1, instead of condition (ii), if we assume that there exists 
an integer 0l  such that 

00li lt tτ ′ −≥  and (19) holds, then system (1) is input-to-state stable. 

Here, 
lit′  is given by (10). 

Proof.  By Definition 4, we see 
0 01l lt t τ+ +≥ . Hence, 

0 0 00 01 ( , ( ), ).
l ll i i l lt t t t x t u+ ′ ′≥  This 

together with Remark 5 leads to the conclusion. 
Corollary 2.  For the forward complete system (1), suppose that n⊂ RM  is its closed in-

variant set, and the switching instants of ( , )t xσ  are 0 1t t< < ,kt< <  and the index set I  

is finite and denoted with {1,2, , }( ).N N < ∞  If there exits ISS-Lyapunov function ( ; , ,i iiV α α  

, )i iα χ ( i∈ I ) such that  

 
1 1( , ( )) 1 ( , ( ))max{ ( ( ), ), (|| ||), , (|| ||)} ( ( ), ),

l l l lt x t l l N t x t l lV x t t u u V x t tσ σα χ α χ
− −

≥  

for 0,1, ,l =  then system (1) is input-to-state stable. 
Its proof is easy and omitted. 

4  ISS conditions based on the average dwell-time 

In this section, we will use the concept of average dwell-time to obtain some sufficient ISS con-
ditions for both SNL systems and switched linear systems. 

Definition 5[17].  For any given constants * 0τ >  and 0N , let ( , )N s tσ  denote the switch 

number of ( , )t xσ  in 0[ , ), ,s t t s t∀ > ≥  and let 

 0 0 0*[ *, ] ( , ) : ( , ) , .t sN N s t N t s tστ σ
τ
−⎧ ⎫= ⋅ ⋅ + ∀ >⎨ ⎬

⎩ ⎭
S ≤ ≥  

Then, *τ  is called the average dwell-time of 0[ *, ]NτS , and 

0 0
0

sup sup
( , )t t t s t
t s

N s t Nσ
σ

τ >
−
−≥ ≥  

is called the average dwell-time of ( , )t xσ . 

4.1  ISS analysis of switched nonlinear systems 

Theorem 2.  For the forward complete system (1), suppose that n⊂ RM  is its closed in-
variant set, and switching instants of switching law ( , )t xσ  are 0 1t t< < .kt< <  If there 

are ISS-Lyapunov functions ( ; , , , )i i i iiV α α α χ ( i∈ I ) and constants 00, 1,c η> ≥  such that 

for any \nξ ∈R M , mμ ∈R and i∈ I , 

 0(| | ) ( , ) (| | ), ,iV t t tα ξ ξ α ξ ∀M M≤ ≤ ≥  (20) 

 0| | (| |) ( , ) ( , ) ( , , ) ( , ), ,i i i iV t V t f t cV t t t
t

ξ χ μ ξ ξ ξ μ ξ∂
⇒ +∇ ⋅ − ∀

∂M≥ ≤ ≥  (21) 

 
1 10 ( , ( )) ( , ( ))max{ ( ( ), ), (|| ||)} ( ( ), ), 0,1, ,

l l l lt x t l l t x t l lV x t t u V x t t lσ ση α χ
− −

=≥  (22) 
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then system (1) is input-to-state stable for any 0
0 0

ln
( , ) , ,N

c
η

σ ⎡ ⎤⋅ ⋅ ∈ ⎢ ⎥⎣ ⎦
S  where 

 0 0
0 0 0

ln ln
, ( , ) [ *, ] : * .N N

c c
η η

σ τ τ⎡ ⎤ ⎧ ⎫= ⋅ ⋅ ∈ >⎨ ⎬⎢ ⎥⎣ ⎦ ⎩ ⎭
S S  

Proof.  For a given time instant 0 ,t t≥  assume that system (1) has j  switching instants in 

0[ , )t t , and denote them as 1 2 jt t t< < < . Let ( , ( )) ( 0,1, , )l l lt x t i l jσ = =  and ( 0,1, )
lit l′ =  

be the time instant defined according to (10). If 
jit t′≥  on [ , )jt t , then by Lemma 1, 

 ( ( ), ) (|| ||);
jiV x t t uα χ≤  (23) 

if 
jit t′< , then ( ( ), ) (|| ||)

jiV x s s uα χ>  for any [ , )js t t∈ , and hence, by (20) we have 

 | ( ) | (|| ||), [ , ).jx s u s t tχ> ∀ ∈M  (24) 

This together with (21) gives 

 ( ( ), ) ( ( ), ), [ , ).
j ji i j

d V x s s cV x s s s t t
ds

− ∀ ∈≤  (25) 

Thus, when 
jit t′< , we have 

 ( )( ( ), ) ( ( ), ) , [ , ).j

j j

c s t
i i j j jV x s s V x t t e s t t− − ∀ ∈≤  (26) 

Now, let us consider the interval 1[ , ) ( 1,2, , )l lt t l j− = . When 
1ll it t
−
′≥ , we have 

 
1
( ( ), ) (|| ||);

li l lV x t t uα χ
−

≤  (27) 

while when 
1ll it t
−
′< , we have 

1 1( ( ), ) (|| ||), [ , ),
li l lV x s s u s t tα χ
− −> ∀ ∈  which together with (20) 

leads to 
 1| ( ) | (|| ||), [ , ).l lx s u s t tχ −> ∀ ∈M  (28) 

Then, by (21) we have 

 
1 1 1( ( ), ) ( ( ), ), [ , ).

l li i l l
d V x s s cV x s s s t t
ds − − −− ∀ ∈≤  (29) 

This implies that 
 1

1 1

( )
1 1 1( ( ), ) ( ( ), ) , [ , ).l

l l

c s t
i i l l l lV x s s V x t t e s t t−
− −

− −
− − −∀ ∈≤  (30) 

In particular, 
 1

1 1

( )
1 1( ( ), ) ( ( ), ) .l l

l l

c t t
i l l i l lV x t t V x t t e −
− −

− −
− −≤  (31) 

Let (|| ||).uπ α χ=  Then, by (23), (26), (27), and (31), we have 

{ }( )( ( ), ) max ( ( ), ) , ,j

j j

c t t
i i j jV x t t V x t t e π− −

≤  (32) 

{ }1
1 1

( )
1 1( ( ), ) max ( ( ), ) , , 1,2, , .l l

l l

c t t
i l l i l lV x t t V x t t e l jπ−
− −

− −
− − =≤  (33) 

Recalling (22) and substituting (33) into (32) sequentially, we obtain 

 
{

}
11 0

0 0 00

12 1
0

( ) ( )( )

( ) ( ) ( )( )1

( ( ), ) max ( ( ), ) ,

                              , , , .

j j j

j

j j j j

c t t c t tc t tj
i i

c t t c t t c t tc t tj

V x t t V x t t e e e

e e e e

η

η π π π

−

−

− − − −− −

− − − − − −− −−

≤
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Notice that ( , ) ( 0,1,2, , )lN t t j l l jσ = − = . Then, we have 0
0

( , ) lnlN t tj l e σ ηη − = . Thus, 

 
{

}
0 0 0 1 0 1

1 0 1

( , )ln ( ) ( , )ln ( )
0

( , ) ln ( ) ( )

( ( ), ) max (| ( ) | ) , ,

                               , , , .

j

j j j

N t t c t t N t t c t t
i

N t t c t t c t t

V x t t x t e e

e e

σ σ

σ

η η

η

α π

π π π− −

− − − −

− − − −

M≤
 

Let 0
*

ln
.a c

η
τ

= −  Then, 0a > . By Definition 5, for any given 0
0 0

ln
( , ) , ,N

c
η

σ ⎡ ⎤⋅ ⋅ ∈ ⎢ ⎥⎣ ⎦
S  we 

have ,0 0*( , ) .t sN s t N t s tσ τ
−

+ ∀ >≤ ≥ This results in 0 0 0( , ) ln ( ) lnN s t c t s Nσ η η− − −≤  

( ).a t s−  Therefore, by (20) we have 

 { }0 0 0 0 0ln ( ) ln
0 0(| ( ) | ) ( ( ), ) max (| ( ) | ) , (|| ||) .

j

N a t t N
ix t V x t t x t e u eη ηα α α χ− −≤ ≤ MM

 

Let 0 0 0 0ln ln1 1
0( , ) ( ( ) ),  ( ) ( ( ) ), 0, .N as Nr s r e r r e r s tη ηβ α α γ α α χ−− −= = ∀ ∀≥ ≥  Then β ∈  

,KL  γ ∈K  and 0 0 0 0 0| ( ) | | ( ; , , ) | (| | , ) (|| ||),  .x t x t t x u x t t u t tσ β γ= − + ∀
M M M

≤ ≥  Thus, system 

(1) is input-to-state stable. 
Remark 6.  By 0 1,η ≥  the condition (22) in Theorem 2 is obviously weaker than the con-

dition (7) in Theorem 1. This includes the case where the “energy” of the subsystem after a 
switching instant is greater than that of the subsystem before the switching instant. 

4.2  ISS analysis of switched linear systems 

In this subsection, we will investigate switched linear multi-variable systems of the form 
 ( , ( )) ( , ( )) 0 0( ) ( ) ( ),   ( ) ,t x t t x tx t A x t B u t x t xσ σ= + =  (34) 

where ,  n n n m
i iA B× ×∈ ∈R R  are constant matrices for any i∈ I , respectively. 

In the sequel, for any n n×  matrix A , AJ  denotes the Jordanian normal form of A , ( )Aη  

is the largest real part of the eigenvalues of A , and ( )M AΔ  and ( )m AΔ  are the largest and 
smallest singular values of matrix A , respectively. 

For a given matrix set n n×∈RA , 1A denotes the set of all stable matrices of A , and 2A  

denotes 1\A�A . Noticing that ( )Aη  depends continuously upon the parameter of A , when 1A  

is compact, we have 
1

max ( ) 0A Aη∈ <A  and 
1 1

| max ( ) | min | ( ) | .A AA Aη η∈ ∈=A A  In particular, 

when the number of all stable matrices in A  is finite and greater than zero, we have 

1
max ( ) 0A Aη∈ <A . 

Lemma 5.  For any given matrix set n n×⊂ RA , if A  and 1A  are compact, and 1A  is 

nonempty, then for any 
1

(0,min | ( ) |),A Aε η∈∈ A  there exists a constant ( ) 0M ε >  such that 

 ( )| | ( ) , , 0,a A tAte A e A tε
ελ ∀ ∈ ∀A≤ ≥  (35) 

 ( ) max ( ) ,A Aε ελ λ∈ < ∞AA  (36) 

where 
( ( ))

( ) ( ) , ( ) ( ) 0,
( ( ))

M

m

P A
a A A A M

P Aε εη ε λ ε
Δ

= + >
Δ

 and ( )P A  is n n×  nonsingular ma-
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trix satisfying 1( ) ( ) .AA P A J P A −=  
Proof.  For any given A∈A , assume that it has p  Jordan blocks with dimensions of 

1 2 ,pn n n≤ ≤ ≤  and the real parts of the corresponding eigenvalues are 1 2, , , ,pτ τ τ  re-

spectively. Then, 1 2 pn n n n+ + + =  and 1( ) max .j p jAη τ= ≤ ≤   

Noticing that 1( ) ( ) ,AJ tAte P A e P A −=  we have  

 1 ( ( ))
| | | ( ) ( ) | | |, 0.

( ( ))
A AJ t J tAt M

m

P A
e P A e P A e t

P A
− Δ

= ∀ >
Δ

≤  

Further, it is easy to see that 1/ 2| | ( ( )) ,AJ te t= Σ  where 
1

1 2

2

2( 1) 4
2 22 2

1 1 1 2 2 22 2 2
1

2( 1)2( 1) 4
2 2

2 2 2
2

( ) ( 1) ( 2) ( 1) ( 2)
(2!) (( 1)!) (2!)

                  ( 1) ( 2)
(( 1)!) (2!) (( 1)!)

p
p

n
t t

nn
t

p p p
p

t t tt e n n t n e n n t n
n

t t te n n t n
n n

τ τ

τ

−4

−−

⎡ ⎤ ⎡
Σ = + − + − + + + + − + −⎢ ⎥ ⎢

−⎢ ⎥ ⎣⎣ ⎦
⎡ ⎤⎤
⎢+ + + + + − + − + +⎥

− −⎢⎥⎦ ⎣
.⎥
⎥⎦

 

Since for 
1

(0,min | ( ) |),A Aε η∈∀ ∈ A  

2( 1)4
2 2

2 ( ) 2 2
( ) ( ) ( 2 ) ,

(2!) (( 1)!)

pn
t

a A t
p

t t tn n p t n p e
ne ε

ε
−

−
⎡ ⎤Σ

+ − + − + +⎢ ⎥
−⎢ ⎥⎣ ⎦

≤  

we have 2 ( )
( )lim 0,t a A t
t

e ε
→∞

Σ
=  and hence, [0, ) 2 ( )

( )( ) sup ,t a A t
tM

e ε
ε ∈ ∞

Σ
< ∞  and 

1
2

( ) ( ) 2 ( )
( ( )) ( ( ))| | | | ( ) ( ),
( ( )) ( ( ))

AJ tAt
M M

a A t a A t a A t
m m

P A P Ae e t A
P A P Ae e eε ε ε

ελ
Δ Δ Σ⎛ ⎞= ⎜ ⎟Δ Δ ⎝ ⎠

≤ ≤  

i.e., (35) holds. 
Further, by the compactness of A , nonsingularity of ( )P A  on A , and the continuity of 

( ( ))M P AΔ  and ( ( ))m P AΔ  on A , ( )Aελ  is continuous on the compact set A  with respect 
to A . Thus, (36) holds.  

Now, we study the ISS property of the switched linear system (34). 
For system (34), let { : } n n

iA i ×= ∈ ⊂ RA� I� and { : } n n
iB i ×= ∈ ⊂ RB� I� , assume that A and 

B  are compact, and the subset 1A  consisting of all the stable matrices of A  is nonempty and 

compact. For any given 
1

(0,min | ( ) |),A Aε η∈∈ A  define ( )a Aε  and ( )Aελ  as in Lemma 5, 

and set 

1
( ) min | ( ) |, ( ) max{0,max ( )},A Aa A a A a A a Aε ε ε ε

− +
∈ ∈= =A A  (37) 

0(1 )ln ( )
0 ( ) max | |, .

i

N
B ib B M e ελ

ε
+

∈= = A
B� B  (38) 

For a given switching law ( , )t xσ  and a time interval [ , )s t , let ( , )T s tσ
+  and ( , )T s tσ

−  be 
the total time of system (34) running on stable subsystems and unstable subsystems in [ , )s t , 

respectively; and for any * (0, ( )]a aε
−∈ A  and * 0τ > , define 
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0

*

,0 *
( , ) ( )

[ *, *; ] ( , ) [ *, ] : sup * ,
( , ) ( )t s t

T s t a A a
a N

T s t a A a
σ ε

σ
σ ε

τ σ τ τ τ
+ −

> − +

⎧ ⎫−⎪ ⎪= ⋅ ⋅ ∈ >⎨ ⎬
+⎪ ⎪⎩ ⎭

S A S ≥ ≤  

where the average dwell-time στ  of ( , )t xσ  is given by Definition 5. 

In the sequel, for simplicity of expression, we will drop the arguments of ( )ελ A , ( )a Aε
− , 

( )a Aε
+  and 0 ( )b B  and denote them by , ,a aε ε ελ − +  and 0b , respectively. 
Theorem 3.  For switched linear system (34), assume that A  and B  are compact, and the 

subset 1A  consisting of all the stable matrices of A  is nonempty and compact. Then for any 

given 
1

(0,min | ( ) |),A Aε η∈∈ A  and * (0, ]a aε
−∈ , there exists *

1* ln
a ετ λ≥  such that 

(i) for any ( , ) [ *, *; ]aσ τ⋅ ⋅ ∈S A , system (34) is forward complete, and 

(ii) system (34) is ISS if and only if the control-free system ( , ( ))( ) ( )t x tx t A x tσ=  is asymptoti-

cally stable. 
Proof.  Part (i) and the necessity of part (ii) are obvious. Thus, below we need only to show 

the sufficiency. 
For any given time instant 0 ,t t≥  assume that in the time interval 0[ , )t t , system (34) has j  

switching instants: 1 2 .jt t t< < <  Let ( , ( )) ( 0,1, , )l l lt x t i l jσ = = . Then, the solution of sys-

tem (34) can be expressed as 

 
1

0 0
0

  

0 0 0 0 ( , ( )) ( , ( ))
  

( ) ( ; , , ) ( , ) ( , ) ( ) ( , ) ( ) ,
j j

j

t t

t x t t x t
t t

x t x t t x u t t x t s B u s ds t s B u s dsσ σ σ= = Φ + Φ + + Φ∫ ∫ (39) 

where  
1 11 1( , ( )) ( , ( )) ( , ( ))

1
( ) ( ) ( )( , ) , [ , ).j j j lj j j j l lt x t t x t t x t

l l
A t t A t t A t st s e e e s t tσ σ σ− +− −

+

− − −Φ = ∈  

We first show that for any given constant * (0, ]a aε
−∈ , *

1* ln ,
a ετ λ≥  and switching law 

( , ) [ *, *; ]aσ τ⋅ ⋅ ∈S A , there are 0a >  and 0M >  such that 

 ( )
0| ( , ) | , .a t st s Me t s t− −Φ ∀≤ ≥ ≥  (40) 

Noticing that 

1, , 0,1,2, , 1;
( , )

0, ,
l l

j

j l t s t l j
N s t

t s tσ
+− = −⎧⎪= ⎨

⎪⎩

≤ ≤

≤ ≤
 

we have [1 ( , )]lnN s te σ ελ
ελ

+=  for [ , )js t t∈ ; and [1 ( , )]ln1 N s tj l e σ ελ
ελ

+− + =  for 1[ , )l ls t t +∈  ( 0,1,l =  

, )j . In particular, 0( , )N t t jσ =  and 0[1 ( , )]ln1 N t tj e σ ελ
ελ

++ = . Thus, 

 
1 11 1( , ( )) ( , ( )) ( , ( ))( )( ) ( )( ) ( )( )1

[1 ( , )]ln ( , ) ( , )

| ( , ) |

            .

j j j lj j j j l lt x t t x t t x ta A t t a A t t a A t sj l

N s t a T s t a T s t

t s e e e

e e

ε σ ε σ ε σ

σ ε ε σ ε σ

ε

λ

λ − +− −

+ + − −

− − −− +

+ −

Φ ≤

≤

 

By the definition of [ *, *; ]a τS A , for any given ( , ) [ *, *; ]aσ τ⋅ ⋅ ∈S A , we have ( , )a T s tε σ
+ + −  

( , ) * ( ).a T s t a t sε σ
− − − −≤  This together with 0( , ) t sN s t Nσ

στ
−

+≤  and 1* ln
aσ ετ τ λ∗> ≥  
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implies that *
1* ln 0.a a ελτ

− >  Then, by some straightforward calculations, we have 

 1
( )| ( , ) | , [ , ) [ , ), 0,1, , 1,l l

a t s
jt s Me s t t t t l j+

− −Φ ∀ ∈ ∪ = −≤  

where 0(1 )ln .NM e ελ+=  Thus, (40) is true, which together with (39) gives 
1

0

0

0 0

0

  
( ) ( ) ( )

0 0 0 0 0
  

 
( ) ( )( ) 0

0 0 0
 

| ( ; , , ) | | | || || || ||

                       | | || || | | || || .

j

t t
a t t a t s a t s

t t

t
a t t a t ta t s

t

x t t x u Me x M e b u ds e b u ds

Mb
Me x M e b u ds Me x u

a

σ
− − − − − −

− − − −− −

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠

+ +

∫ ∫

∫

≤

≤ ≤

 

Let ( , ) asr s Me rβ −=  and 0( ) .
Mb

r r
a

γ =  Then, ,β ∈KL  γ ∈K  and 

 0 0 0 0| ( ; , , ) | (| |, ) (|| ||),x t t x u x t t uσ β γ− +≤  
i.e., system (34) is input-to-state stable. 

Remark 7.  Comparing Theorem 3 with Theorem 2, one can see that for switched linear sys-
tem case, some of the subsystems of system (34) are allowed to be unstable. However, for 
switched nonlinear systems, all of its subsystems are required to be stable, since the degree of 
instability of nonlinear systems is hard to be characterized. 

Remark 8.  By Theorem 3, the ISS of switched linear system (34) is independent of the con-
crete choice of ( , )σ ⋅ ⋅  in [ *, *; ]a τS A . 

5  Conclusion 

In this paper, the ISS of switched nonlinear system and switched linear system are investigated, 
respectively. The main results can roughly be divided into two classes. One is based on multiple 
Lyapunov function method, and the other is based on (average) dwell-time method. Firstly, by 
using the method of multiple Lyapunov function, a sufficient ISS condition is given for general 
SNL systems based on a quantitative relation of the control and the values of the Lyapunov func-
tions of the subsystems before and after the switching instants. Here, the ISS-Lyapunov functions 
of the subsystems are allowed to be different from each other rather than simply assuming the 
existence of a CISSLF. Thus, the condition is sufficient not only for the switched systems pos-
sessing a CISSLF, but also sufficient for the switched systems without any CISSLF. Secondly, by 
employing the method of the average dwell-time, some ISS sufficient conditions are given for 
switched nonlinear systems and switched linear systems, respectively. Among others, the condi-
tion on switched nonlinear systems is characterized by the size of the dwell-time, and that on 
switched linear systems is characterized by the average dwell-time and the ratio of the total time 
that the system runs on unstable subsystems to the total time that the system runs on stable sub-
systems. 
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